

Available online at www.sciencedirect.com

Journal of Power Sources 171 (2007) 483-488

www.elsevier.com/locate/jpowsour

Effect of pyrophosphates as supporting matrices on proton conductivity for NH₄PO₃ composites at intermediate temperatures

Short communication

Toshiaki Matsui^a, Naoto Kazusa^a, Yukinari Kato^a, Yasutoshi Iriyama^a, Takeshi Abe^{a,*}, Kenji Kikuchi^b, Zempachi Ogumi^a

^a Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan

^b Department of Materials Science, The University of Shiga Prefecture, Hikone, Shiga 522-0057, Japan

Received 27 April 2007; received in revised form 11 June 2007; accepted 11 June 2007

Available online 23 June 2007

Abstract

Composite electrolytes of NH₄PO₃/pyrophosphate (NH₄PO₃/ZrP₂O₇, NH₄PO₃/Sr₂P₂O₇, and NH₄PO₃/TiP₂O₇) with various molar ratios were fabricated, and their thermal and electrochemical properties were compared at intermediate temperatures. The XRD pattern of NH₄PO₃/Sr₂P₂O₇ composite was consistent with a mixed phase of crystalline NH₄PO₃ and Sr₂P₂O₇ regardless of the composition ratio, whereas those of the other composites were identical to pyrophosphates. A significant difference in conductivity was observed depending on the supporting matrices of pyrophosphates although each composite contained almost the same molar concentration of NH₄PO₃. Among the composites, NH₄PO₃/ZrP₂O₇ (molar ratio; 1:1) exhibited the highest proton conductivity, which was more than twice that of NH₄PO₃/TiP₂O₇ (1:1). The conductivity of NH₄PO₃/Sr₂P₂O₇ (2:1) composite was 2–3 orders of magnitude lower than that of NH₄PO₃/ZrP₂O₇ (1:1). These results suggest that the surface property of pyrophosphates strongly affects the electrochemical properties of composites. Furthermore, a fuel cell that used NH₄PO₃/ZrP₂O₇ composite as an electrolyte was successfully demonstrated at 300 °C.

© 2007 Published by Elsevier B.V.

Keywords: Proton conductor; Intermediate-temperature fuel cells; Pyrophosphate; Ammonium polyphosphate

1. Introduction

Recently, considerable effort has been devoted to develop novel solid state proton conductors for intermediate-temperature applications $(100-300 \,^{\circ}\text{C})$ such as fuel cells, sensors and pumps [1-4]. At low temperatures (below $100 \,^{\circ}\text{C}$), hydrated perfluorosulfonic acid membranes such as Nafion[®] are widely used as electrolytes. However, these materials require water to maintain high conductivity. Thus, complicated water management is one of the major obstacles for intermediate-temperature operation since the relative humidity decreases with an increase in temperature between 100 and 300 $\,^{\circ}\text{C}$. Although many heatresistant polymers with high water-holding capability also have been investigated extensively, usage of polymers derived mainly from organic substances limits the operating temperature below

0378-7753/\$ – see front matter © 2007 Published by Elsevier B.V. doi:10.1016/j.jpowsour.2007.06.060

150 °C. On the other hand, inorganic materials are more thermally stable and several compounds have been reported with relatively high proton conductivity. Among them, oxoacid salts such as CsH_2PO_4 are a class of promising electrolyte at intermediate temperatures [5–9].

Ammonium polyphosphate (NH₄PO₃, APP) is one of the oxoacid salts, which is used as fertilizers and flame retardants. This material shows proton conductivity accompanied with the partial decomposition of NH₄PO₃ into HPO₃ at *ca*. 250 °C even under a dry atmosphere, whereas the resultant compound does not stay in the solid state at intermediate temperatures. Thus, the heterogeneous system is preferable, and several groups have reported the electrochemical properties of the composite electrolyte of NH₄PO₃/(NH₄)₂SiP₄O₁₃ [10,11]. Although the compound of (NH₄)₂SiP₄O₁₃ serves as a supporting matrix, composite effects have not been considered carefully. In previous reports [12,13], we revealed that the structural change of supporting matrix of (NH₄)₂MP₄O₁₃ into MP₂O₇ (M=Ti and Si) occurred at intermediate tempera-

^{*} Corresponding author. Tel.: +81 75 383 2483; fax: +81 75 383 2488. *E-mail address:* abe@elech.kuic.kyoto-u.ac.jp (T. Abe).

tures in fuel cell operating condition, resulting in the peculiar ionic-conduction property. The analysis of phosphate anion distribution suggested that not only decomposed phosphate species but also matrix structure affected the proton conduction. Then the pyrophosphate of TiP₂O₇ was used as a new matrix, and the resultant composite of NH₄PO₃/TiP₂O₇ exhibited high conductivity of *ca*. 24 mS cm^{-1} at $250 \degree \text{C}$ in dry Ar [14]. In this case, almost reversible non-Arrhenius-type temperature dependence was observed. This unique behavior suggested that the interfacial interaction between NH₄PO₃ and TiP₂O₇ should play an important role in the mechanism of proton conduction. Similar interfacial interaction was also reported recently in CsH₅(PO₄)₂/SiP₂O₇ composite electrolyte [15,16]. Thus, to elucidate the composite effects of pyrophosphates on proton conductivity will be a useful guide to develop a novel proton conductor at intermediate temperatures. In this study, we aimed to investigate the effects of metal species in pyrophosphate on thermal and electrochemical properties for NH₄PO₃ composites, and pyrophosphates of ZrP_2O_7 and $Sr_2P_2O_7$ were selected. Composite electrolytes of NH₄PO₃/pyrophosphate (NH₄PO₃/ZrP₂O₇, NH₄PO₃/Sr₂P₂O₇) with various molar ratios were fabricated, and obtained properties were compared among them and with those for NH₄PO₃/TiP₂O₇ [14]. Furthermore, as a preliminary study, fuel cells were operated at 300 °C with supplying dry gases since there were few reports on such research.

2. Experimental

2.1. Preparation of NH₄PO₃/pyrophosphate composite electrolyte

Ammonium polyphosphate (NH₄PO₃) was synthesized from H₃PO₄ (Nacalai Tesque, Inc., guaranteed reagent), P₂O₅ (Wako Pure Chemical Industries, guaranteed reagent) and (NH₂)₂CO (ICN Biomedicals, Inc., ultrapure) [17]. The supporting matrix of zirconium pyrophosphate, ZrP₂O₇, was prepared by the dehydration of zirconium hydrogenphosphate (Zr(HPO₄)₂, Aldrich) at 1100 °C for 24 h in air. Strontium pyrophosphate, Sr₂P₂O₇, was prepared by heating strontium hydrogenphosphate (SrHPO₄, Aldrich) at 650 °C for 6 h in dry Ar. The X-ray diffraction patterns of the resulting powders were identical to those of NH₄PO₃ of Form I [18], cubic-ZrP₂O₇ [19], and α -Sr₂P₂O₇ [20], respectively, as shown in Fig. 1. The composite electrolytes were prepared from the resulting powders in molar ratios of NH₄PO₃: pyrophosphate according to NH₄PO₃/ZrP₂O₇ (1:1) and NH₄PO₃/Sr₂P₂O₇ (1:1, 2:1 and 4:1). The mixtures were planetary ball-milled and pressed into pellets. The resulting pellets were then sintered at 400 °C for 10 h under NH₃ gas flow. The density of heat-treated composites was about 90% relative to the theoretical density. The composition ratio of each composite is summarized in Table 1. We can roughly estimate the molar concentration ratio of NH₄PO₃ in the composite by assuming that all of the samples were almost dense; NH₄PO₃/ZrP₂O₇ (1:1): NH₄PO₃/TiP₂O₇ (1:1): $NH_4PO_3/Sr_2P_2O_7$ (2:1): $NH_4PO_3/Sr_2P_2O_7$ (4:1) = 1.0: 1.1: 1.4: 1.8.

Fig. 1. X-ray diffraction patterns of (a) the obtained NH_4PO_3 , (b) ZrP_2O_7 , and (c) $Sr_2P_2O_7$.

2.2. Characterization

The structures and the thermal stabilities of the composites were analyzed by X-ray diffraction (Rigaku RINT 2500 X-ray diffractometer) and thermogravimetry (Seiko Instruments Inc., EXTER6000 TG/DTA 6200), respectively. The typical working conditions for XRD were 40 kV and 40 mA, with a scanning rate of 1° min⁻¹. The thermal stability was examined in dry Ar. The zeta potential of matrices was measured with an electrophoretic light-scattering spectrophotometer (Otsuka Electronics, ELS – 800SA). The density of each component was measured by Archimedes' method (Quantachrome, Ultrapycnometer 1000).

2.3. Electrochemical measurements

For electrochemical measurements, Pt/C electrodes (E-TEK, phosphorus acid fuel cell, 1.0 mg cm^{-2}) were used. Proton conductivity was measured by the ac impedance method (Solartron 1260 frequency response analyzer and Solartron 1278 potentiostat) in a temperature range of 150-300 °C under a dry Ar atmosphere. The applied frequency was in the range of 0.1 Hz to 1 MHz with a voltage amplitude of 20 mV. For the evaluation of power generation and transference number, a single cell of Gas (H₂), Pt/C|NH₄PO₃/ZrP₂O₇|Pt/C, Gas (O₂ or H₂/Ar) was fabricated with SUS310S and Gore-tex[®] Hyper-sheet[®] gaskets [14]. All samples were measured after being held at 300 °C until a steady state was achieved. Dry hydrogen and oxygen

Table 1Composition ratio of each composite

Composite	Molar ratio	Volume ratio	Weight ratio	
NH ₄ PO ₃ /ZrP ₂ O ₇	1:1	0.59	0.37	
NH ₄ PO ₃ /Sr ₂ P ₂ O ₇	2:1	1.0	0.56	
NH ₄ PO ₃ /Sr ₂ P ₂ O ₇	4:1	2.1	1.1	
NH ₄ PO ₃ /TiP ₂ O ₇	1:1	0.69	0.44	

Fig. 2. X-ray diffraction patterns of (a) NH_4PO_3/ZrP_2O_7 (molar ratio; 1:1) and (b) $NH_4PO_3/Sr_2P_2O_7$ (1:1) composite after the heat-treatment at 400 °C for 10 h under an NH_3 atmosphere.

were supplied as a fuel and oxidant under atmospheric pressure, respectively.

3. Results and discussion

3.1. Characterization

The XRD patterns of the NH₄PO₃/pyrophosphate composites (molar ratio; 1:1) that had been heat-treated at 400 °C for 10 h in NH₃ are shown in Fig. 2. In the case of NH₄PO₃/ZrP₂O₇ composite, the pattern was identical to that of cubic-ZrP₂O₇, indicating that NH₄PO₃ was in the amorphous state. Similar results were obtained for NH₄PO₃/TiP₂O₇ composites [14], which resulted from the melting of NH_4PO_3 during the initial heat-treatment at 400 °C. On the other hand, even after heat-treatment, the XRD pattern of NH₄PO₃/Sr₂P₂O₇ composite was consistent with a mixed phase of crystalline NH₄PO₃ and Sr₂P₂O₇. Regardless of the composition ratio, similar diffraction patterns were obtained. These results should reflect the difference in compatibility between NH₄PO₃ and pyrophosphate at intermediate temperatures. Considering that pure ammonium polyphosphate in the solid state changes into highly viscous material at 400 °C even under an NH₃ atmosphere, the solidification process will be different depending on matrices.

As a typical example, the time-course of weight loss for NH_4PO_3/ZrP_2O_7 (1:1) composite at 300 °C in dry Ar is shown in Fig. 3. The result for each composite is summarized in Table 2. The sample was heated to 300 °C at a rate of 2 °C min⁻¹, and then kept for *ca*. 23 h. In the case of NH_4PO_3/ZrP_2O_7 (1:1) composite, the weight loss reached a steady state with a loss of 7.4%. However, even under a dry condition, this value exceeded the ideal weight loss of 4.7% which was calculated by assuming that NH_4PO_3 decomposed completely into HPO₃. This result indicates that thermal decomposition proceeded with the volatilization of phosphate components. Other

Fig. 3. Time-course of weight loss for NH_4PO_3/ZrP_2O_7 (molar ratio; 1:1) composite at 300 °C in dry Ar (solid line).

composites of NH₄PO₃/Sr₂P₂O₇ (2:1) and NH₄PO₃/TiP₂O₇ (1:1) showed similar trend patterns with the weight loss of 9.3% and 5.2%, respectively. To examine the effect of the matrix on thermal stability, the weight change per total weight of NH₄PO₃ was calculated by assuming that each pyrophosphate was stable (Table 2). The composites of NH_4PO_3/ZrP_2O_7 (1:1) and $NH_4PO_3/Sr_2P_2O_7$ (2:1) exhibited almost the same "weight change" although a notable difference was observed in the crystallinity of NH₄PO₃ (Fig. 2). Hence, there is no specific correlation between thermal stability and crystallinity. Moreover, the net "weight change" was not proportional to the estimated molar concentration ratio of NH₄PO₃; the composite of NH₄PO₃/TiP₂O₇ (1:1) exhibited the lowest weight change. Thus, the thermal stability of NH₄PO₃ in the composite appeared to strongly depend on supporting matrices. Throughout this experiment, each composite was kept in the solid state, indicating thermally stable.

3.2. Electrochemical properties

The temperature dependence of proton conductivity for NH_4PO_3/ZrP_2O_7 (1:1) and $NH_4PO_3/Sr_2P_2O_7$ (2:1) composites in dry Ar is shown in Fig. 4. For comparison, the result for NH_4PO_3/TiP_2O_7 (1:1) composite is also shown [14]. Initially, each sample was kept at 300 °C for 24 h until the steady state was achieved. Measurements were then taken under cooling (temperature decreased from 300 to 150 °C) and heating (temperature increased from 150 to 300 °C), as shown as "1st cool" and "2nd heat", respectively. Generally, the conductivity is only proportional to the carrier concentration when the mobility

Table 2 Weight change for each composite at 300 °C

Composite	Molar ratio	Weight loss (%)	Weight change per total weight of NH ₄ PO ₃ (%)
NH ₄ PO ₃ /ZrP ₂ O ₇	1:1	7.4	27.6
NH ₄ PO ₃ /Sr ₂ P ₂ O ₇	2:1	9.3	26.1
NH ₄ PO ₃ /TiP ₂ O ₇	1:1	5.2	17.1

Fig. 4. Temperature dependence of proton conductivity for NH_4PO_3/ZrP_2O_7 (molar ratio; 1:1), $NH_4PO_3/Sr_2P_2O_7$ (2:1 and 4:1), and NH_4PO_3/TiP_2O_7 (1:1) composites [14] in dry Ar: $(\bigcirc, \Box, \Delta, \Diamond)$ first cooling and $(\bullet, \blacktriangle)$ second heating.

of charge carrier is constant. This will be true if the conductivity of composite depends on the decomposition ratio of NH₄PO₃ despite matrix species, since each sample contained almost the same concentration of NH₄PO₃: the partially decomposed form of NH₄PO₃ is responsible for high conductivity. However, the conductivity increased in the order of NH₄PO₃/Sr₂P₂O₇ $(2:1) \ll NH_4PO_3/TiP_2O_7 (1:1) < NH_4PO_3/ZrP_2O_7 (1:1)$ at each temperature, which did not agree with the prediction. The conductivity of NH₄PO₃/Sr₂P₂O₇ (2:1) was 2-3 orders of magnitude lower than that of NH_4PO_3/ZrP_2O_7 (1:1) with no temperature dependence, regardless of almost the same decomposition ratio of NH₄PO₃. On the other hand, NH₄PO₃/Sr₂P₂O₇ composite with a different molar ratio of 4:1 exhibited higher conductivity comparable to that of NH₄PO₃/ZrP₂O₇ (1:1). Thus, an efficient conduction path is not formed in NH₄PO₃/Sr₂P₂O₇ (2:1). Furthermore, different proton conduction mechanisms should be proposed between $NH_4PO_3/Sr_2P_2O_7$ (4:1) and NH_4PO_3/ZrP_2O_7 (1:1) considering the notable difference in the temperature dependence of conductivity. Both of these phenomena are quite different from that of pure NH₄PO₃ with an apparent activation energy of ca. 0.47 eV, indicating the existence of composite effect. This will be concerned with not only NH₄PO₃ concentration but also the volume ratio of each component such as decomposed phosphate species and matrix as is discussed in the previous paper [13]. The phosphate distribution and their state should be strongly affected by the crystallinity of NH₄PO₃ because of the significant difference in compatibility between NH₄PO₃ and pyrophosphate. Thus, it is revealed that the metal species in pyrophosphate have much effect on proton conduction properties and the conduction phase in the amorphous state is preferable as observed in Fig. 2.

In contrast, the conductivity of NH_4PO_3/ZrP_2O_7 (1:1) was more than twice that of NH_4PO_3/TiP_2O_7 (1:1) although

Fig. 5. Zeta potential of $ZrP_2O_7(\bullet)$ and $TiP_2O_7(\diamondsuit)$ as a function of pH.

NH₄PO₃ in each composite exhibited good compatibility with pyrophosphates judging from XRD patterns. Moreover, for NH₄PO₃/ZrP₂O₇ (1:1) composite, the temperature dependence of conductivity appeared to be convex upward and to be saturated at ca. 300 °C with almost reversible behavior. This non-Arrhenius-type phenomenon is similar to those of NH₄PO₃/TiP₂O₇ composite and NH₄PO₃/(NH₄)₂SiP₄O₁₃ composite [11,14]. Especially in the case of NH_4PO_3/TiP_2O_7 , this behavior becomes prominent at a low molar ratio of NH₄PO₃. This was attributed to that the interface of amorphous polyphosphate/TiP₂O₇ played an important role. Then, the zeta potential of pyrophosphates was measured to examine the influence of the matrix surface, as shown in Fig. 5. The isopotential points of ZrP_2O_7 and TiP_2O_7 were *ca*. pH 3.6 and 4.0, respectively, indicating that the surface of ZrP_2O_7 was negatively charged. Accordingly, the surface basicity of pyrophosphate strikingly affected the thermal stability of composite, resulting in a difference in the carrier concentration as is discussed in the previous section. In these composites, decomposed phosphate serves as an acid medium. Thus, non-Arrhenius-type behavior in conductivity should also be caused by the acid-base interaction at the interface between the conduction phase and matrix. Since the surface charge is dependent on matrix species, the activation energy in interfacial proton conduction should be different. At this stage, however, the proton conduction mechanism at the interface has not been elucidated sufficiently and is under investigation. The optimized interfacial interaction and structure will provide the fast conduction path.

Hereafter, the composite electrolyte of NH_4PO_3/ZrP_2O_7 (1:1) was used in a fuel cell since it exhibited the highest conductivity of 51 mS cm⁻¹ at 300 °C. The Nernstian potential of a hydrogen concentration cell at 300 °C is shown in Fig. 6. The experimental value agreed well with the theoretical one at a high partial pressure of hydrogen. However, the gap between these two values increased with an increase in the concentration gradient, and the apparent transference number was calculated to be 0.83. This value is slightly lower than that of NH_4PO_3/TiP_2O_7

Fig. 6. Nernstian potential of a hydrogen concentration cell using NH₄PO₃/ZrP₂O₇ (molar ratio; 1:1) composite electrolyte at 300 °C: (\bullet) experimental values and (\triangle) theoretical values.

(1:1) at 250 °C [14]. This should be caused by the low density of heat-treated pellets and subsequent NH_3 elimination at 300 °C, resulting in the leakage of gas through the electrolyte under a high concentration gradient. However, this will be improved by optimizing the fabrication method.

The power generation characteristics of a single cell using NH₄PO₃/ZrP₂O₇ composite at 300 °C are shown in Fig. 7. The electrolyte thickness was 2.2 mm. Dry hydrogen and oxygen were supplied as a fuel and oxidant, respectively. The open circuit voltage was 0.72 V, which was somewhat lower than the theoretical value of 1.13 V because of the low relative density of the electrolyte as mentioned above. However, it was possible to generate electricity up to 151 mA cm⁻², and the maximum power density was 27 mW cm⁻². This performance is compa-

Fig. 7. Cell voltage (open triangles) and power density (filled circles) as a function of current density at 300 °C. [H₂, Pt/C|NH₄PO₃/ZrP₂O₇ (molar ratio; 1:1)|Pt/C, O₂].

rable to that of NH_4PO_3/TiP_2O_7 composite, and it has been reported that performance limitations are dominantly due to the electrolyte thickness [14]. Thus a dense and thin electrolyte should dramatically improve the performance. This composite electrolyte has the possibility to realize the water-free fuel cell system, which will be the breakthrough technology for use in both stationary and mobile applications. However, there are many points to be elucidated and improved for the development and is under investigation.

4. Conclusions

Composite electrolytes of NH_4PO_3 /pyrophosphates were fabricated, and their thermal and electrochemical properties were compared at intermediate temperatures. The metal species in pyrophosphate have much effect on the compatibility with NH_4PO_3 , resulting in the different proton conduction mechanism. X-ray diffraction analysis is a convenient method to provide the information on the compatibility, and the amorphous state of NH_4PO_3 appears to be preferable for fast proton conduction. It is also clarified that a difference in the surface basicity of pyrophosphate strongly affects the thermal stability and conductivity due to the acid–base interaction at the interface. Therefore, the optimization of interfacial interaction and structure is useful in the design of novel ionic conductors with high mechanical strength at intermediate temperatures.

Acknowledgements

This work was supported by Research and Development of Polymer Electrolyte Fuel Cell of New Energy and Industrial Technology Development Organization (NEDO), and also by a Grant-in-Aid for the 21st COE program for a United Approach to New Materials Science from the Ministry of Education, Culture, Sports, Science and Technology.

References

- [1] B.C.H. Steele, A. Heinzel, Nature 414 (2001) 345.
- [2] P. Costamagna, S. Srinivasan, J. Power Sources 102 (2001) 242.
- [3] P. Colomban, Proton Conductors: Solids, Membranes and Gels-Materials and Devices, Cambridge University Press, New York, 1992.
- [4] T. Norby, Solid State Ionics 125 (1999) 1.
- [5] S.M. Halie, D.A. Boysen, C.R.I. Chisholm, R.B. Merle, Nature 410 (2001) 910.
- [6] A.I. Baranov, B.V. Merinov, A.V. Tregubchenko, V.P. Khiznichenko, L.A. Shuvalov, N.M. Schagina, Solid State Ionics 36 (1989) 279.
- [7] W. Bronowska, J. Chem. Phys. 114 (2001) 611.
- [8] J. Otomo, N. Minagawa, C. Wen, K. Eguchi, H. Takahashi, Solid State Ionics 156 (2003) 357.
- [9] V.G. Ponomareva, G.V. Lavrova, Solid State Ionics 145 (2001) 197.
- [10] T. Kenjo, Y. Ogawa, Solid State Ionics 76 (1995) 29.
- [11] M. Cappadonia, O. Niemzig, U. Stimming, Solid State Ionics 125 (1999) 333.
- [12] T. Matsui, S. Takeshita, Y. Iriyama, T. Abe, Z. Ogumi, Electrochem. Commun. 6 (2004) 180.
- [13] T. Matsui, S. Takeshita, Y. Iriyama, T. Abe, Z. Ogumi, Solid State Ionics 178 (2007) 859.
- [14] T. Matsui, S. Takeshita, Y. Iriyama, T. Abe, Z. Ogumi, J. Electrochem. Soc. 152 (2005) A167.

- [15] T. Matsui, T. Kukino, R. Kikuchi, K. Eguchi, Electrochem. Solid-State Lett. 8 (2005) A256.
- [16] T. Matsui, T. Kukino, R. Kikuchi, K. Eguchi, Electrochim. Acta 51 (2006) 3719.
- [17] S. Ueda, K. Oyama, K. Koma, Kogyo Kagaku Zasshi 66 (1963) 589.
- [18] C.Y. Shen, N.E. Stahlheber, D.R. Ryroff, J. Am. Chem. Soc. 91 (1969) 62.
- [19] JCPDS File Card no. 24-1490.
- [20] JCPDS File Card no. 24-1011.